核心提示:尺度不变特征变换匹配算法SIFT(2)e-mail:chentravelling@163.comSIFT算法 在10月初,草草学习了一下SIFT(可以戳这里查看),主要是调用opencv函数库了的函数...
尺度不变特征变换匹配算法SIFT(2)
e-mail:chentravelling@163.com
SIFT算法 在10月初,草草学习了一下SIFT(可以戳这里查看),主要是调用opencv函数库了的函数进行了实践,而并没有深入了解SIFT描述子的原理以及opencv中相关函数的用法和参数说明。本篇blog作为LZ的小笔记,记录一下opencv中相关函数的说明,对于SIFT特征的原理后续将花时间继续了解。
C++代码 环境:vs2010+opencv2.3.1+win7 ×64 这部分代码还是使用上一篇SIFT的代码,本篇重在了解一些函数和数据结构。
opencv相关函数和数据结构说明
1.drawMatcher():Draws the found matches of keypoints from two images.
参考:https://docs.opencv.org/2.4/modules/features2d/doc/drawing_function_of_keypoints_and_matches.html C++: void drawMatches(const Mat& img1, const vector& keypoints1, const Mat& img2, const vector& keypoints2, const vector>& matches1to2, Mat& outImg, const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), const vector>& matchesMask=vector >(), int flags=DrawMatchesFlags::DEFAULT )
e-mail:chentravelling@163.com
SIFT算法 在10月初,草草学习了一下SIFT(可以戳这里查看),主要是调用opencv函数库了的函数进行了实践,而并没有深入了解SIFT描述子的原理以及opencv中相关函数的用法和参数说明。本篇blog作为LZ的小笔记,记录一下opencv中相关函数的说明,对于SIFT特征的原理后续将花时间继续了解。
C++代码 环境:vs2010+opencv2.3.1+win7 ×64 这部分代码还是使用上一篇SIFT的代码,本篇重在了解一些函数和数据结构。
#include#include using namespace std; using namespace cv; int main() { //read the two input images Mat image1 = imread(image1.jpg); Mat image2 = imread(image2.jpg); //if failed if(image1.empty()||image2.empty()) { cout< keypoint1,keypoint2; //detect image with SIFT,get key points siftDetector.detect(image1,keypoint1); Mat outImage1; //draw key points at the out image and show to the user drawKeypoints(image1,keypoint1,outImage1,Scalar(255,0,0)); imshow(original_image1,image1); imshow(sift_image1,outImage1); Mat outImage2; siftDetector.detect(image2,keypoint2); drawKeypoints(image2,keypoint2,outImage2,Scalar(255,0,0)); imshow(sift_image2.jpg,outImage2); //imwrite(sift_result2.jpg,outImage2); //store 10 keypoints in order to watch the effect clearly vector keypoint3,keypoint4; for(int i=0;i<10;i++) { keypoint3.push_back(keypoint1[i]); keypoint4.push_back(keypoint2[i]); } // difine a sift descriptor extractor SiftDescriptorExtractor extractor; //store the descriptor of each image Mat descriptor1,descriptor2; BruteForceMatcher > matcher; vector matches; Mat img_matches; //compute the descriptor of each image extractor.compute(image1,keypoint3,descriptor1); extractor.compute(image2,keypoint4,descriptor2); //match matcher.match(descriptor1,descriptor2,matches); //show the result drawMatches(image1,keypoint3,image2,keypoint4,matches,img_matches,Scalar(255,0,0)); imshow(matches,img_matches); //store the match_image //imwrite(matches.jpg,img_matches); waitKey(0); return 0; }
opencv相关函数和数据结构说明
1.drawMatcher():Draws the found matches of keypoints from two images.
参考:https://docs.opencv.org/2.4/modules/features2d/doc/drawing_function_of_keypoints_and_matches.html C++: void drawMatches(const Mat& img1, const vector
-
- img1 – First source image.
- keypoints1 – Keypoints from the first source image.
- img2 – Second source image.
- keypoints2 – Keypoints from the second source image.
- matches1to2 – Matches from the first image to the second one, which means that keypoints1[i] has a corresponding point in keypoints2[matches[i]] .
- outImg – Output image. Its content depends on the flags value defining what is drawn in the output image. See possible flags bit values below.
- matchColor – Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1) , the color is generated randomly.
- singlePointColor – Color of single keypoints (circles), which means that keypoints do not have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
- matchesMask – Mask determining which matches are drawn. If the mask is empty, all matches are drawn.
- flags – Flags setting drawing features. Possible flags bit values are defined by DrawMatchesFlags.
struct DMatch { //三个构造函数 DMatch(): queryIdx(-1), trainIdx(-1),imgIdx(-1),distance(std::numeric_limits
::max()) {} DMatch(int _queryIdx, int _trainIdx, float _distance ) : queryIdx( _queryIdx),trainIdx( _trainIdx), imgIdx(-1),distance( _distance) {} DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) : queryIdx(_queryIdx), trainIdx( _trainIdx), imgIdx( _imgIdx),distance( _distance) {} intqueryIdx; //此匹配对应的查询图像的特征描述子索引 inttrainIdx; //此匹配对应的训练(模板)图像的特征描述子索引 intimgIdx; //训练图像的索引(若有多个) float distance; //两个特征向量之间的欧氏距离,越小表明匹配度越高。 booloperator < (const DMatch &m) const; };
一般使用Brute-force descriptor matcher进行匹配,结果并不具有可读性(戳这里看图),那么这里请留意匹配的结果保存在了vector定义的动态数组matches中,这就意味着我们可以对匹配结果进行一系列操作,比如再drawMatches()函数前添加一句:matches.erase(matches.begin()+25,matches.end()); 既可以选择最新的25个匹配结果。